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Glossary of Notation

~1

A covarlance matrix (m x m)

B(’,•) beta function

C sample covarlance mat~jx (m x m)

cof(b1~ ) cofactor of matrix el ement b1~
DIE “detection and estimation ”

E{•) mathematical expection

etr (B) exp{ tr B)

H0,H1 hypotheses —

I identity matrix

K~(b) modifi ed Bessel function of the second kind

r 
K~
m)(B) matrix argument (mxm) Bessel functions

l ikel ihood ratio

m number of sensors or data channel s -

rn ,Il mean vector (mx 1) and matrix expansion (mx n)

ML “max imum likel ihood”

n number of sampl es

p(.) pdf

pdf “probability density function ”

q

QCF “quadratic cost function”

R risk or average cost

ROC “receiver operating characteristics ”

SCF “simpl e cost function”

trB trace of the matrix B

u,U in-phase data vecto,~, n~atrIx (real part)

v ,V quadrature data vector , matrix (Imaginary part )
iv
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X (complex) data matrix (mx n)
I

X0 matrix expansion of p (mx n)

x~ n: th sam ple

samples up to and including x~,p
r(•) gamma function -

rm(•) generalized gamma function (see 4-19)

r data space

A unit del ay

0 set of signal parameters

set of no ise parameters

A l ikel ihood rat io

A threshold -

p sampl e mean vector (mx 1)

a priori probabilities

b , B 
- 

transpose of vector b, ma tr ix B

b*, B* complex conjugate transpose

b1
~ el ement of B 1

I B I  determ inan t of matr ix B
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1.0 INTRODUCTION

1.1 Background

The physical prob lem wh ich form s the backdro p for the work

summarized In this report may be described as follows: A definite

number (in) of discrete, pass ive sensors whose locations are known have

been depl oyed in such a way as to enabl e them to sense emiss ions due

to a source of interest if it happens to be within a certain area. It

is des ired to process the data obta ined from these sensors on a given

observation interval in a manner that permits statements to be made

with a h igh degree of conf idence concern ing the absence or presence of

the source and its location as a function of time.

While the technology for performing these tasks jointly is rather

mature for the spec ial case in which the sensors are quite near eac h

other (within a wavelength ) and of the same type, the procedures to be

follo wed -in the general case have rarel y been devel oped to the po int of

operational capability . For exampl e, arrays of sensors physically con-

nected to one another have lo~g been used to couple source di rection

with detection. Most often, however , systems ~des igned to deal wi th

mul tipl e sensors assume the posture illustrated In Figure 1-1.

In thi s conce ptual di agram the des ired informa tion ( local iza tion

parameters) is shown as being the result of a regression (model-fitting)

Involving estimates of parameters directly related to “preprocessing” of

the rece ived da ta; the phrase “with memory” Indicates tracking . For

exampl e, if the extrac ted parame ters are beari n gs, then the reg ress ion

may simpl y be a position “fix” ; use of an exten ded Kalman f il ter or

other tracking algorithm allows other -Information , such as veloc ity, to

be estimated by remembering past fixes and calculating trends. The

role of detection In this system is to hel p the operator to select

(-
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sensors which have “good data ” on them In the first place; usually,

“energy detection ” is impl ied, althou gh “SNR detection ” may occasionally
p

be empl oyed.

The “conditioning1’ function incl uded in the figure refers to

operations such as bandpass filteri ng, time delays to accomplish

“steering”, and transmission over a data coniiiunications link . The

enti re diagram may be digital or analog, and conditioning mi ght entail

sampl ing , AiD conversion , and FFT processing as well.

Having set up this figurative system as a reference, several of its

(typical) features are worth noting as a means to introduce ideas which

are pursued in this report. The development of these -ideas or concepts,

as applied in the present physical problem, actually began several years

ago and is now beginning to produce results. Originally, the question 
-

was asked , “How can the detection/estimation outcomes at one sensor

(with high SNR) be used to aid or ‘coach ’ those at another sensor (with

low SNR)?” This question arose in the cOntext of a system which in its

essential aspects is described very wel l by Figure 1—1 , with the preprocessing

performed at different physical sites or “plat forms .”

Modular vs. Multidimensional 
-

One way to describe what is illustrated in the figure is to say,

“The preprocessing is modular. ” That is , detection and signal parameter

extraction operations are performed on the data from each sensor separately,

in isolation or remote from the data received by the other sensors. This

situation existed for the excellent reason that each sensor-bearing plat-

form needed the capability to perform these functions solo. How then to

3
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join capabilities when operating in consort, was the question. At first,

the commitment to modularity was such a big factor that solutions were

sought in which preprocessing results at one platform are used in some

way to improve or to help obtain those at another. This can be done a

number of ways; however, it is clear that there are better ways to

approach the problem.

Cons ider the “data matrix ” of Figure 1-2 . Each row consists of time

samples from a different sensor. (The samples could be spectral samples -

the idea is the same.) What the modular preprocessing in Figure 1—1 does

is treat each row of this matrix data base separately. In general , there

is information contained in the inter-relations of the samples from row

to row. Therefore , we expect that preprocessing that operates on the

data as a whole will obtain better results. That is, a mult idimensional

approach seems to be called for alon gside , if not rep lacing , the modular

preprocessing.

Partitioned vs. Coupled

Another description of the system in Figure 1-1 is given by the state-

ment , “The detection and parameter extraction functions are partitioned .”

Unless the detector is non p arametr ic, or “distribution-free,” in form,

then , it makes decisions entirely upon the basis of a priori information -

the “known parameter” solution --or upon what analysis or experience has

indicated the marginal distribtuion of the data should be (again a function

of a priori information only). Actual detectors hardly ever are built

this way since noise and signal power very so widely in physical problems.

Instead, detection algorithms designed for composite or variable parameter

hypotheses usually include process ing desi gned to estimate one or more key

4 ~~
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parame ters , or at least to choose values wh ich sat isfy certain cr i ter ia

such as “worst case.” So then , in practice detectors usuu . y include

some form of estimation.

The form of estimation that detectors employ may not necessari ly

be the same as that needed for parameter extract ion , however , so that

functionally the partitioning shown in Figure 1-1 may still be said to

exist. The reasons for this may be explained with the help of Figure 1-3

Conceptually, detection is the process of selecting the most likely

hypothesis, the hypotheses being probability distribution model s depending

upon such parameters as mean and variance (which in turn are related to

signal and noise parameters). Parameter extraction may be seen as the

process of fitting (or regressing) values of unknown parameters to the

data through an assumed dependency or model.

There is an obvious similarity of form between the two processes:

both conceptually, at least , involve regressions on the data ; the

parameters varied in either process are related . The chief difference

between them seems to be in the criteria which the regressions must

— satisfy. However, if both tas ks are to be performed , we should l ike

to optimally perform both simultaneously. This goal has motivated

research i n wha t the l itera ture calls  “coupled” or join t detect ion and

estimation.

I
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1.2 Scope of the Study

This report summarizes a four man-month contractual effort to

pursue the concepts just discussed . Basically, the work descr ibed here in

Is exploratory--that is to say, -It was begun with rather broad and

partially defined questions in mind . Therefore, al thou gh some results

were obtained which are suitabl e for immediate simulation connected with

exploratory system development , the bul k of the study’s output is in the

form of further questions which are more definite than those which

motivated the work.

1.2.1 Literature Review

In its essence, the work has been an effort to discover and to

summarize what the technical literature has to offer the engineer who

-is attempting to deal with the physical probl em and concepts that have

been described , synthesizing contributions from di fferent disciplines

as required . For exampl e, Appendix A is an early effort to apply the

techniques of analysis of variance to the multisensor problem (predating

the contract). Synthesis is required because typically only a portion

of the problem is treated in one place. The short bi bliography included

:: with this report is an indication of the variety of sources which

have been found to contain useful material .

There is undoubtedly much information in the mathematics and

statistics literature which would be helpful to the signal process ing

engineering community. Extracting thi.s information is d~f~f 1cul t because

often the engineer lacks the background necessary to ask the right

questions or to interpret the significance of what he finds.

8
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Under the limited level of effort which is summarized herein ,

a beginning has been made .

literature which seems to have potential for answering the questions

- 
- 

we are dealing with can be recognized by the following key words:

multivariate statistical analysis
empirical Bayesian procedures
miii ti-parameter pattern recognition
functions of multipl e arguments
multipl e time series analysis

This is not to say that every articl e dealing with these topics is

useful--quite often the “interesting part” is rendered less useful by

simplifying assumptions and analytical conventions wh ich do not apply

to the signal process i ng probl em. For exampl e, the resul ts we seek

are for comp lex (narrowband ) data , whereas the literature mostly treats

real data .

- - Literature which has not yielded guidance for the multi-sensor

probl em in the sense that it is defined here include that which deals

with

- multidimensional systems theory
t -  analysis of variance (as applied to the life

sciences).

1.2.2 Approach Taken -

While the literature review process necessarily will take an

exten ded period as we learn what exists and how to interpret It, along the

way it is desi rabl e to test the procedures and analytical tool s found

which seem promising. Thus in thi s report efforts to formulate a unified

approach to the multi-sensor si gnal processing--specifica lly, detection

and estimation (D/E)--are summarized as they have developed under the

contract.

— - - V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - V - V - _ _ _ _ _ _ _
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The structure of the report is the following: Chapter 2 is a review

of classical D/E given partly to provide a self-contained context for

the later chapters, and partly as a means for introducing a vocabulary

and a notation. -

Chapter 3 expands on two basic lines of approach to combined D/E,

for the case of one channel or sensor (as they appear in the literature).

These approaches are , it seems , the closest to dealing with the sort of

questions that have been posed that we have found so far.

Chapter 4 then summarizes formulation of the multisensor D/E

probl em as a “matrix data” pro blem , and shows how the classical and

combined D/E theories look when applied to more than one data channel .

The report “flow” can be diagrammed in the following way:

singl e channel m channel s

separate Chapter 2
DIE (review) Chapter 4

(extension)
combined Chapter 3
D/E (adaptation)

Since only a modest l evel of effort was involved , a great deal of

what seems to be promising work remains to be done. In Chapter 5, the

results of this exploratory study are discussed in terms of the interpre-

tat-ions which are provided for the design of mul tisensor processors.

Al so, recommendations are given for applications and for further studies.

10 - :
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2.0 MODELING AND ANALYTICAL APPROACHES

In this chapter we establish the framework for the effort

summarized In this report. First, the anal ytical model s employed

throughout the work are described , including notation. Then the

operations of detection and estimation are defhjed in the usual way,

and the classical (single channel ) results summarized by way of

review. Finally, the procedures to follow in the subsequent chapters

are given.

2.1 System Description

As mentioned at the very beginning of thi s report, presumably

there exist at least potentially in the medium being consider ed (e.g.

underwater) waveforms due to the source or sources of interest. We

:. restrict our attention to a single source, whose waveform we denote by

s(t;e) to indicate variation in time and dependence upon certain para-

meters 0. Whether this source of interest is present or not, the medium

is such that there ex ists at each of m sensors a no ise wave form

n1(t,n1), 1=1 ,2. . .  ,m; the noise parameters{i~j) are In general different

in value at each sensor.

By “sensor ” we shall refer in this work to whatever appropriate

transducers and conditioning may be required to acquire data , including

a certain-amount of processing whose nature will be specified in

particular exampl es as they are brought up. The physical locations of

the sensors are taken to be dif feren t, so that observation in both

space and time Is performed by the coll ection of sensors, whose outputs

are assumed to be availabl e to a centralized processor. Our primary

concern Is with the structure of this processor; therefore, our model l ing

t 11
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effort begins with the “data ” {x (t)) from the m channel s, as i l lus tra ted

in Figure 2-1.
I

In effect , we are placin g the “observer” inside the box

mar ked “centralized processor.” (This, of course , Is the standard

operating procedure for analysis of this type). Hav ing been placed in

these circums tances , the observer is going to try -to perform the

assigned system tasks as well as possibl e with the data suppl ied. Basically

the tasks (described in detail later) are to make inferences based on

the numer ical da ta concernin g the source of interest. Depen d ing upon

the task, certa in informa tion needs to be suppl ied to, or developed

by, the observer. Specifying this information amounts to modelling

the data.

For exam ple , in order to decide whether the source of interest

(“ si gnal”) is present, we should like to know the probability distrl —

butiohs ofthe data under the hypcitheses -

H0 : noise only (2-1)

H1 : signal and noise.

The appropriate probability density functions (pdf’s) are written

p (X) p(XIH ), 1 0, 1 (2—2) -

and where the func tional forms of pdf’ s are in general different for

arguments and conditions , according to the notation used in this report.

Here al so we use the no tation X to refer to all the da ta observed on

a given interval . It Is assumed that , with respect to a given bandw idth,

the data are In the form of compl ex numbers (in-phase and quadrature

components ) and may be taken together to form a data matrix:

-

: 

- 
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X = {x j~); I = 1, 2,...m; k=1 , 2,...n; (2—3)

where

X Ik
_ x1(tk) 

= + 
~

V1k~ 
(2-4)

The “marginal” or unconditioned pd-P s p0(X ) and p1(X) are not

usua lly ava i la ble; instead , on e has pdf ’ s “index~d” or cond it ioned by

signal and noise parameters :

p1(Xl e,ri) p(X~e,n) (2—5)

p0(XJn) p(XJn).

If the values of the parameters 0 and i~ are known , then the pdf’ s of

(2-5) are simply “parameterized” versions of those of (2—2). If not ,

then the values either need to estimated in some way or the a priori

pdf p(0 ,n) specified to obtain

p1(X) =jdodn p(Xj e ,~)p(o ,i~) (2—6)
p0(X) =fdedri p(X J~ )p(0 ,n). 

-

Here 0 and i-i refer to col lections of parameters 0 1) = {n~). By the

time the or iginal signal waveform with parame ters a propagates to the

various sensors over different paths , the aggregate parameter set 0 gets

expanded because some of the i nd iv idual parame ters (suc h as amplitude

t - and phase) are modified along the way--requiring the assumption of

different values In each channel--and perhaps some new parameters are

acquired in the process (such as doppl er shift). The situation becomes

even more compl ex If the original parameters themselves are changing wi th

time , so In this work we adopt the usual analytical procedure of

considering the parameters constant over the interval of time they are

being observed .

~ t . 14
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For another example in the way the processing task drives the

data model l ing effort , cons ider that , In order to locate the source, we

should like to know the locations 0f the sensors. Not only that, but

also conditioning and preprocessing parameters such as gains, sensor

directjvi-t -i es and orientatIons , and the values ~of any t ime delays

arti ficially introduced to the channels as a means of ~tbeamforming .
u

Then , too, we have to model the functional relationships between the

source position and motion quantities and the quantities actually

sensed. Therefore, the data being used for th is task must be model led

to the extent of prov id ing the requ i red In form ation a pr ior i or means
* for est imating It.

In this study we confine our scope to the tasks of detection and

signal parameter extraction , with particular attention to performance

- 

of these tasks jointly. In all exam ples , we assume that the no ise

— samples are jointly Gaussian and that signal and noise combine additively.

2.2 System Funct ion Descr ipti on

In Fi gure 2-1, the processor outputs were named somewhat cryptically

as “decisions” and “numbers ”. Al though decisions based upon inferences

from the data could conceivably ran ge from “drop a bomb” to “t he source

is a f ish,” we restrict ourselves to the classical choice between the

— 
hypotheses H0 and H1 concerning the presence of a signal . And, while

what the “numbers” are will continue to be nebulous (in an effort to

maintain generality), for the most part in the examples treated they

will be estimates of parameters of the data waveforms , denoted by a and

n. Both the detection and estimation functions are to be carried out

in ways that are optima l in some sense.

15 
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2.2.1 Optimal Detection

A review of the well known optimal detection procedures reveals

the dependence of “optimality” upon the informa tion postula ted.

Class ically , the optima l detection probl ems is to find to the critical

region F1 such that If we

H1 true if X in F1decide: (2-7)

H0 true i f X in F0 
= F-F t

then certain avera ge “costs” are minimized . There are four possibilities

connected with the decison , each in concept incurring a cost. The

traditional notation is

true case dec ision cost

H H C0 0 1-0
- H0 H1 C (type 1 error or false alarm)

H1 H0 C~ (type 2 error or miss)

H1 H1 C1~~

By defining the error probabilities as

a = Pr~H1IH 0}- fdXPo(X) 
(2-8)

F1
B = Pr~H0IH1~ ~JçdXp 1(X) 

- 

(2-9)

and the probabilities of the occurrences themselves as

1 — if
0 

= Pr {H1 true} , (2- 10)

16
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then the average cost or “risk” is computed to be

R = w0~aC. + (1_u)C10]+ir 1~~C6
+ (1_8)C1J (2-11)

=JdX [1r0C0P0
(X ) + W 1C1 B p1(X )] 

-

+JdX[iroC1~~~0
(X ) + W1CB p1(X)]

= ifOC:+ 
~i 

C1_8

- if0(C0
_ C1~~~p0(X) ] . (2-12)

For non-negative costs and situations in which mistakes are more costly

than correct decisIons , (2-12) is minimized if we pick F
0 

such that

F0: ~ 
(c8

_ C1B)  p1(X ) wO (c -c1 )P0(x) . (2—13) 
V

By defining a likelihood ratio

A (X) = Pl(x)/P (x ) , (2—14)

we can write the corresponding optimal decision rule as

H1 (c -c ~A (x ) < ~~~C ~~~~ 
(2-15)

H0 1~~B I— B)

or more generally as
H~

A (x ) ~ A (2-16)



where x is a threshold. The procedure indicated by (2-15) is the

Bayes decision rule , while (2-16) gives the Neyman-Pearson detector

when A is chosen to yield a fixed value of a (the resulting B is

then minimum for that a). If x = 1 , then the “ ideal observer ” detector

scheme Is operative and the total probability of error Is minimi zed.

In the forego ing , use of the marg inal pdf ’s p0(X) and p1(X )

includes the cases where these functions are computed from conditional

and a prIori pdf’s, as shown in (2-6). Thus the likel ihood ratio (2-14)

may have the form

E {p(XJ0 ,n))
Mx) 

,
,- = 

~
“
~{p(XI )) 

(2-17) 

-

When th is is the case, it can be shown that the decision rule (2-15) is the

one that also mimizies the a posteriori risk or average cost given the

- data.

What if the a priori probabilities ’0 and it
1 and/or pdf p(O,-r%) are

unknown? One procedure is to seek a “least favorable” (fictional )

a priori distribution for the unknown parameters - one which maximizes

the risk , - then minimize the risk as shown above to obtain a decision

rule. Thi s class of procedu res, known as “m in imax ”, works fine in

pr incipl e, but often it is difficult to say what the least favorable

distribution is. Moreover, the resulting decision rule is sometimes

overl y conserva tive, depending upon how “typical” the least favorabl e

or “worst case” distribution is when actual -data is processed. However ,

it can be stated that, if the risk based on the conditional pdf’s does

not depend upon the parameters , then the correspon di ng Bayes decision

rule is also a minimax rule.

18
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By far the most popular procedure to adopt when a priori inforr~ation

• is missing is to ignore it and to use the conditional pdf’ s to compute

the likel i hood ratio after estimating the unknown parameters according

to some criterion . One such criterion which is somewhat arbitrary with

respect to detection risk , but has nice estimatjon properties , ir the

maximum likel ihood criterion. Here, when ig noran t of the exact

distri bution of the parameters a and n, we select values for them which

make the observed data X most likely; that is e
~
, 

~~~~
, and are chosen

such that

p (X 18 1,fl
1
) >p (X 10 ,l])

- (2-18)
p(X J ~ 0) > p(XJr i )

(often n~~
i-
~~). The resul ting decision rule , while retaining the Bayes -

form -- that is, likel ihood ratio detection --does not necessarily

involve minimum risk or even an “acceptabl e” risk. However , if the

data base is satisfactory , then the quality of the estimates and also

the decision will be acceptable.

2.2.2 Optimal Estimation

-Reviewing established parameter estimation procedures also shows

that optimality criteria can be influenced by the amount of a priori

information available. 
-

Basic properties of estimators are summarized in Table 2-1, in

which for simplicity we speak of the observed data X and one parameter

set 0. These basic properties , shown for both the case of conditional 

_ 
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- TABLE 2-1
I F- PROPERT I ES OF ESTIMATORS

CONDITIONAL UNCONDITIONAL

bias b(e) = E
~j 0 1e(x)} - 0 B E

~,0
1o(X)I_ E0~e}

E~o-o~o} = E0 {b( e)}

E~o — o }

s~~~~e 
e2 e = EXI0{[e(X)_e]2} e2= E

~,0 -{[o(X)_ ~
2
~}= E1e2(0)}

error (MSE) E~(e-e)~~t,~ E{(e_e)9

efficiency c(e) = e
2(o)min 

~~
- 1 C = e2

min/~2 
< 1

e (e)

- m in imum MSE [1 + b (e)]2 E ~ Il + b (0)]2~
E{[-~~—.tn ~(x Io )] i4 E{[~ - en p (X,o)]

2
~ i 

-

- 

unbiased b(0) = 0 B = 0

efficient c(O) = 1 = 1

sufficient p(BIX ) = p [o)~(X)]. p(X) = f(X)E9{g[O(X),~j~

or p (oJX) = -f(X)g[o(X),0]

) V
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estimates (based on p(xjo)) and unconditional (based on p(X,0)), are

often extended to define more subtle properties , such as asymptotic

efficiency , when sample size and various convergence criteria are taken

into account. In this brief review we restrict ourselves to the basics

and cons ider two lar ge classes of estimators , Bayes and Maximum likel i-

hood (ML).

In a manner very similar to that shown above for the Bayesian

- 

~~
- detector , when a priori parameter pdf’s are ava i la ble , we can construct

estimators e(X) of the unknown parameters 0 from the data which

minimize the risk or average cost of estimation. In this case we write

‘- the r isk as

R = Ex o {c[e ,o(X) ] } V

=JdxdeC[9~O(X)]p (X~0). (2-19)

The- necessary minimization with respect to 0 requires specifying the

cost func tion to some degree; also the form of the est ima tor thus obta ined

depends upon the cost function. Therefore when talking unconditional

estimators, one has to refer to the specifi c class of cost func tion

for which the estimator is optimal .

For the so-called “simple cost func tion ” (SCF), we use V

— 

or 

c(e—~) = Ce_ (Ce
_ Cc

)6(0_0) (2—20a)

C ,O # O
c(e-o) = e (2—21)

e = e

Using the first notation , it is easy to see that the optimal estimator

in the case of the SCF is the unconditiona l Ill estimator, given by

p(X,) > p(X,e). (2-21)

21
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For the fidelity criteria , or quadratic cost function (QCF)-,

• C(0—0) = C0(~-o)
2 (2—22)

the resulting “Bayes estimator” is

0 = E{0~X}, (2—23)

the a posterior-i mean of the parameter. Statements that can be made

abou t the Bayes estimator for the QCF are the follow ing:

(a) it is conditionally unbiased : b(0) = 0

- ~~
- (b) it has the smalles t aver age var iance amon g all unb iased

est imators
(c) if the joint distribution p(X,6) is unimodal and symmetric

V about the mode (i.e., mean = mode) with respect to 0, then
the Bayes estimator is the maximum a posterior-i estimate.

(d) it is the optimal e~timator i-f the cost function (other than
QCF) is even about 0= 0 and if the a posteriori pdf p(ejx) has
mean = mOde.

With only the conditional pdf p(XI0) availabl e, we use the

- V (conditional) ML estimator,
- p(X~ë) > p (XIo) . (2-24)

- 

Al though in general ML estimates are biased and not unique , they have

good asymptotic features (under rather general assumptions) such as

- consistency (asymptotic unbiasedness) and efficiency. Al so, ML

estimators are sufficient statistics (or functions of them) when

they exist, and when efficient estimators exist , they are ML

estimators. On the whole, then , unless cost funct ions are an

integral aspect of the probl em , peopl e find ML estimation to be

the convenient route to follow.

- 
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2.3 Procedures adopted for this study

Having reviewed very briefly some classical results from detection

and est imat ion theory for reference , we proceed in the light of our

stated objectives in the following way.

In Chapter 3 we pursue the notion that optimal joint detecti&n and

estimation involves detectors and estimators that are possibly different

from those obtained separately, using two basic approac hes to the task ,

and develop ing single-channel examples to Illustrate them.

In Chapter 4 the detection an d estimation tasks are formula ted

for data in the form of matrices in an attempt to discover

in what ways processors designed to operate on m channel s simultaneousl y

differ from combinations of single-channel operations.

23
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3.0 JOINT DETECTION AND ESTIMATION

Intuitively it seems reasonabl e that an optimal procedure for jointly

performing detection of a signal -In noise and estimation of parameters would

invol ve a processor structure in general different from a simple combination

of the optimal procedures for performing these tasks separately. One

mi ght also anticipate that the joint operation would in some sense

be better as wel l as different - perhaps more efficient if not more accurate.

Optimality, of course, is with respect to given criteria. “Joint

operation” also is a nebulous concept without further definition. In this

chapter two approaches to joint optimal detection and estimation are pre-

sented and ampl ified. One is quite systematic and unified , usin g cost

functions to “couple ” the two -operations (after Middleton and Esposito).

The second is more ad hoc in nature, exploiting the common use by both

operations of sufficient statistics to achieve economical computation

(after Birdsall and Gobien). -

3.1 Cost Coupled Detection and Estimation

In addition to the notations already introduced , we define the

cost functions 
-

= cost of accep ting H0 and estimating noise parameters
when H0 Is true -

= cost of accepting H1 and estimating signal and no ise
parame ters when H0 is true

= cost of accepting H0 and estimating only noise parameters
when H1 Is true

cost of accepting H1 and est imat ing si gnal an d no ise
parameters when H1 is true

24 
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With these costs defined , we can calcu late an uncon ditional average
— cost or r isk as

R Elr(e,n* (3 1)

where the cond i tional r isk is given by

r(e,n) “.( dX [~0 C00(~;n) p(XIn) + it
1 

ê01(~ ;o ,n) p(X Io ,ii)J

+J 
dX [w0 C10(e,~;n) p(XJ~) + 

~i 
C11(~~~;e,y~) P(XIe.n)].

F1 (3-2)

We now ’wish to minimize R with respect to both the critical region F~ and
- 

the estimators 0(X) and ~(X). This is accomplished in two steps: first,

with respect to F1, then 0 and y~

The cond iti onal r isk can be rewr itten as

- r(0,i,) dX A(X,i~;0,n) +
_[ 

dX B ( X ,0,T~;0,T~)

:1 dX A +f dX (B-A) , (3-3)

- In which the identification of A and B Is discerned from (3-2). Granting

that the functions A and B are everywhere positive , r is minimized i-f F0

- 
and F1 are selected so that .

F1: B-cA , F0: B>A . (3 4)

With the estimators yet to be specified , the corresponding conditional

and unconditional decision rul es are

I
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(c01
_C
11) p (XI O ,~) 

H1 
nyA 9

(X;e ,n) = 
~c10-C0~j(iThE ‘

~ 
(3.5)

and

(x) — 
E0,,j(C01-c11)P(xIo .n4 ~i w

y
E1,~{(C10—C00)P~XITi 4 

H0 
‘1 • (3—6)

with A
9 

denoting “generalized likel ihood ratio.”

3.1.1 Differentiable cost functions

Minimization with respect to the estimators 0 and ~ is carr ied

out by di fferentiating R inside the integrals , resul ting In the simul taneous

constra ints

E ~4 = E  -~4 = E  ~!. = o  (3-7)0 ,i~ B ,n 0 ,n

looking at these requirements carefully, we find that they are equivalent

to

E8 it
0 

90 p(XIn) + 11
1 ~O p(x~o,~) = 0 (3-8a),n an

L

ac
E04n0 

~ p(X~ii) + 11
1 ~ p(X~o,n)~= 0 (3-8b)

ac10 aC 1and E0 it
0 

- p(XIn) + it~ ~ p(Xla ,i~) = 0 (3-8c)

Since noise (and noise patameters) are present under acceptance of hypothesis,

It is reasonabl e to assume that

00 
= 

a:10 and 01 
= 

11 (3 9)

so that (3-8a) and (3-8b) are the same equation. This presupposes ,

ac tua lly , that the cost of estimating the noise parameters n Is additively

26
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combined to the other cost components and with the same weigtit under

either decision. I-f we further presuppose that the same weight holds

- -  un der the truth of either hypothes is, we arrive at -

E )!.~. [it0P(XI~) + 
~i 

E01p (XI O in )
}J( 

= 0 (3—10)

For examp le , a set of cost functions based on the QCF might be

C00 
= C1 0  + CN(fl..fl)

V. - C10 
= C0 + cN(~

-n) + CaB
2

C01 
= C8 + CN(fl_T)) + Cb0

2

C11 = C18 + CN(fl—n)
2 
+ C5(0-O )

2 
. (3-11)

These costs lead to the estimates

= E~r~JX} = it
0 

E ~r~IX .H0} + ‘~i 
EIfl1X,Hi} (3—12)

= 

~~~~~ 
E{6 IX ~H1~~ A~~ :~ ~: 

A, (3-13)

and the (unconditional) decision rule

C —c + E {c o2—c ( — o ) 2 1x} H1
(x) — B 1-B b (x) >— 

C —C + C o~(x) H 
(3-14)

a 

- 

a l-a a 0

or 
c
~
o2(X ) (cb_cs)E{e2Ix} 

~~ 
C~0~ (X ) 1 ir~~0—C1~~)

A(X) 1 + 
~8~~~1_8 

+ CB
_Cl_B 

+ j C8- C1..~ 
~~ 

1~B Cl~~

(3—15)

Immediately we see that, under this cost ass ignment , the noise parameter

estimate -is the same as in separate D/E, the signal parame ter est imate is

mod i fied by the separa te D/E likel ihood ra tio , and the decision rul e

Is considerably more complicated .
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EXAMPLE: Suppose a sinewave Is to be detected in Gaussian noise. The

appropriate conditional pd-f’s may be wr itten

~~~~~~~~~~~~ 

N) - (1)
n 

ex~
)_ 

~iiE[
ui 

- a) + (v i 
- 8) 211

p (XIN) 
(~~~~~

-

~~~)

“ 

exp~- :~ir 
~~~~ (uj

2 
+ vj2)I. (3-17)

The parameters a , B and N are cons idered to be independen t, with a priori

pdf’s
2

- ‘ -  

- 

p(a) = 
~~~~~~

. exp 
)- 

~ (a_a
0)~ (3-18)

p (B) = 

i
l. ex~)_ ~ 

(

B_B
0~
2
~ 3-19

- p(N) = ~2Y0xOK1(2A0~]4 exp - 
N y 0A 0

2 

~ N > 0. (3-20)

It can be shown that in this case

1 2 (1-n)/2 / ~ 2p0
(X ) = kn [~ ~0~n 

+ ~ K~~1(~2% Xo 
+ 
~n’~

2
~O ) (3 21)

and 
____________

p
1
(X) kn (~) [~~~

Y 0 
R + A~ 12] K~~~ 2~

lA 2 
+ R~/2~0). Ncc na 2

- 

(3-22)

with
V. n

= + (3-23a)
1=1

R~ 
= - i:~::u)24(EVI) 2] (3-23b)

and k~ = [(2it)’~ x010x1(2x0)]~~
. (3-23c) 
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The a ~~~ !.!jor l means are

E1NIX IHO~ 
— y 0~~ A~ + 

~‘~‘o- K~~ 12

V

~

’

~~ 
+ P

fl/2101 
(3-24a)

E1NIx ,Hi~ ~~ + R~/2i0 ,~
1 ’ 3  

)2~ A~ + R~I2v0 (3-24b)

E(0IX) = £ 0 
2 ~X ,H1 (3-25)

N I-na

=
.
~
i. + ~

2
i E {NI X ,H1~

B N +  no2 V0 
2 JX ,H1N +na

= + E t N IX ,HI~ (3—26)

We note that these expressions invo lve the statistics ~~ ~~ ~i, and v ,

which are the sufficient statisti cs in thi s case. Having found these

expressions, then , we can di agram the QCF - coupl ed D/E processor as

shown in Figure 3—1 .

3.1.2 S1~ple Cost Function (SCF)

For the SCF, minimization of R for coupled D/E cannot be carried

out by differentiation of the cost functions since they take the for m

C® 
= C1 t ~ 

+ C~ - A6 (T~
_ T1)6(O)

C10 
z c + Ce -

C01 - C8 + Ce -

C11 C1~~ + Ce - 66(~~T1)6(e_e ) (3-27)
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To these costs there corresponds the risk

R • Ce + w 0~~1 (1-~) + C0a] + w 1[C1_8 (1_8 ) + C88]

— wot~J dX p0(X ,~)6() - dX p1(X ,e,n)

- p0(X ,~)6(~ ) - dX p1(X ,~~~) V

= Ce + RD 
- ~
f

dX {it06(U)p0(X~ri) + ir1p1(X ,,~)} , (3-28)

In wh ich it is un derstood that n~~(X) and 0=0(X). The risk is

minimum when the integral is max imum :

ir
iJ 

dX p1(X ,,i~) + w
of 

dX p0(X,~)

r r-r~

~ 1r~JdX p1(X,O ,~) + -~f :x p0(X,n); (3-29)

us ing

XcF0 when e(x)=O. (3-30)

Thus It Is evident that the estimators 0 and i~ in this case are not

unconditional ML estimators as in the separate D/E situation, but can be

viewed as a kind of generalization of them.
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3.2 Combined Adaptive D/E

— 

- One criticism which is often made against the Bayesian approach

in general is that the formal , optimal solution using the approach requires

information that may not be availabl e In practical situations , such as

a priori distributions for unknown parameters. In these situations one

can simply guess a likely distribution or other needed specification and

proceed with the Bayesian derivation, not knowing whether the resulting

design will be satisfactory (mostly likely, if Intelligent guesses were

ma de, the system will work but we do not expect it to per-form like a true

optimal system). If guessing is too risky or unesthetic , then minimax

or maximum likel ihood approaches can be used , corresponding respectively

to “worst case” or conditional optimization as discussed in Chapter 2.

In this section we consider aspects of another , adaptive approach .

Sometimes called the “empirical Bayes approach,” the object is to take

advantage of certain properties of probability distri butions to obtain

in effect, an estimate of the required a priori information as data are

being taken. Robbi ns has shown that it is possibl e to construct decision

functions (detectors and estimators), with respect to the distributions

of un known parame ters , which asymptotlcally (as more and more observations -

conditioned on the unknown parameters are taken) incur the minimum or

Bayes risk.

Spragins discusses “reproduc ing” properties of probability distributions ,

noting that the a posteriori pdf for parameters 0 on data {x1) has the

I terative fo rmu l ation

_ _  _ _ _ _  ________
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p(oIx ) = 

p (X,1!O) p (O)
n 

~~o(numerator)

= 

p (01X 1)p(x Jo ) 
-

]10(numerator) (3—31)

V. 
where Xn (x 1, x2,..., x~) represents n independent samples of the data.

In particular , as the num ber of samples becomes large, the a p2~~~ io!i pd-f

eventually approaches a narrow spike centered around the true value of 0,

provided the original (a priori) pdf p(o) is defined on an interval

containing the true value of 0.

A simple illustration of this principl e is the following: suppose

V samples from a Gaussian population with unit mean and variance are observed .

Howeve r, tl- e true mean is not known , so the following triangular a priori

pdf is postulated:

p(o) = 5 1 - I e - -~i ~o ~~~~~~~~ 
< 1  (3-32)

(0, el sewhere

After n observations , the a posteriori is proportional to

P(0IXn
) = K exp~~- ~~~~ (x~_o)2~ ~~~ -

- 

— = K exp {- -
~~~ ~~~ 

.)2 - ~
.
~)xj.i)2} ~~

= K exp ~~
- ~ (o-1)9 [1-Is- ~i]~ to- ~I ~ 1. (3-33)

As demonstrated in Figure 3-2, the peak of p (BlXn) does indeed approach

the correct va lue.

— What this phenomenon suggests is that we can select a priori

pdf’s---that is , functional forms---which “look like ” the a posteriori

pdf after a number of f ictional prior data observations . We then can
- 33
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ex pect the same funct ional form to be preserved , I ts parame ters ta king

on values which depend on the data and which converge eventually to the

correct values . For example, in the prev ious illustra tIon we would

choose

p(e) = K ex~{_ 1(0 0
o)21 •

00 being an initial guess of the true value for 0 . The data then

V generates

P(eIX~) 
= K ex~

{ 
- 

1(8_0 o)2 -

- : o—e 2
= K~:xP{_ 

2 

an
’
~) 

} 
V

a S  iwith = 
0 
2 

~ ~-~~~~x1 
= i, large n. (3—35)

a

Ano ther concern of a compu tational na ture is that the a poster iori

pd-f not only reproduce in this sense, but also that the parameters

specifying or “indexing ” the distribution remain fixed in dimension. This

proper ty is insure d i f the parame ters in ques tion have corres pond ing to
— 

them sufficient statistics in the data.

These concepts can be used to real advantage in combined detection

and estimation , as shown by Birdsall and Gobien . The (marginal) likellh::~

function can be developed In the following way to yiel d an iterative or

sequen tial form:
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P (X n tH i)1(X ) = P~X~IH0)

p(9,nIHi) p(nIX ,H0)
= P(0~nIX ~~HjJ PTnIH0) •L(x~Ie .n) (3-36)

by Bayes’ rul e, where L (X nI O fl) is the known parái~neter (conditional)

likel i hood function. This may be written also

i(x~) = 1T L(x 11x 1..1)

— 

n p(x1~x11 ,H1)
3 ~~

T1 ( x X  H )1=1 1 1— 1 ’ 0

n p(O ,r)~X. 1,H1) p(n!X.,H0)

- 

= 

~‘J jto,nJX 1,H1) ~(~~x H~)’ 
(x1IX 1_1 ,O ,n). -

(3-37)

Note especially that L(X~) is not only now in a form for iterative computa—

tion , but also that the choice of 0 and n to evaluate the expression

is arbitrary, leaving the designer free to pick what is convenient.

EXAMPLE: A random sampl e is taken from a Gauss ian popu lat ion whose

mean and variance are unknown . The hypothesis H0: - =0 is to be tested

against the alternative H1: p,~O. According to our present formulation

we fin d for H1
P (X n tO ,n)-p(e ,n)

p(o,nIX ) = ____________

) n Jdedn (numerator

= K~~
n/2 ex~

{ 
_ .
~_E(xj

_e)2}p(O ,n)

1 

- 

= Kn
_n/2

exP{_ k [n(
O_i)2 +> (x l

_i)
2]} ~~~~~~

(3-38)

$
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4;

where 0 stands in the place of the unknown mean and n, the un known

variance. This form suggests choosing

p(O ,n) -= K; °exp ~~ [(e_e~)
2 

+ Tl
O] } (3-39)

for which the modes are and nc~
.

The resulting a posteriori pd-f is then reproducing :

p(o,nlX n
) = a n ”2 exP{_~~~[(e_on)

2 
+ ti

r]I~ 
(3-40)

with v = n + n0 and

- 

no 00 +Vn~n
t. 

— 

n0 + n (3-41a)

— 

n0r~0 +~~ (x.-~~)
2 

+ 

nn0(~~-e0)
2 

(3-41b)
- Tl~~~- (n+njr

a =j1j ( 1 )  
(v-3)/2 

~~~ 
-1

• - (3-41c)

For H0 we have , anal ogous to (3-38),

p(n (X~) = K-n ex4_~~~x~/2n } pCn), (3-42)

suggesting that we choose the a priori pd-f

-n0/2p&i) = Kn exp{_ n0A0/2n} (3-43)

- - . 
with the mode x 1~. The a posteriorl pd-f then is

p(nIX~) = bn;
’
exP{_ 

~~ 
(3 44)
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C.

with y- a no + n aga i n and
- 

= ~O
)

O +~~~ X .j 
3 45a

fl nO + n  -

b~ [(~~~) r ( ~-~~)]. 
- 

(3-45b)

The Iterative -form for the likel ihood function can now be specified as

L(x~IX~_1) 
= ::—~ 

exp -~~~[(e
_o~_i)

2 
+ n-1 - An_i]

— 
~~~~~

- 

~~~~~~~ 2o)(o
~..i

_ 0
~

) + ~~ 1—
~~ i—°n 

+

V 

x L(x~IX~.1~e~n)

= ::~ 
ex~{_~~. [“~°n_i + 0n_ 2 0

~~
0n_i - o~) - (~~~~~ )2

- 

+ e(~-2x~) + n~~ — (n-i)~~ _i + (3-46) 
-

SInce , from (3-37) and comments following, we may use any admissible

fixed values of e and v~ to evaluate the l ikel ihood func tion , we can base

the detection on ~~ - 
~~:

L( ‘X ) — _____- 
~~I n-i —

I
1~ 

-
~~

-
~ 

1(v-3) /2
1~~T _ 2 ‘ 2 / - 1

V~~V j 1  flnX n IJ
I V 

B(~ ~
)

B (3-47)

Using Zn = .tn 1(x~IX~_1). 
we can Imp l ement detection as shown in Figure 3-3.
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4.0 MULTIPLE SENSOR APPLICATIONS

What happens to the detection and estimation (DIE) structures dis-

cussed in the previous chapters, when the data is a vector or matrix?

Or, what If the signal and/or noise parameters are elements of a vector

or a matrix? These questions are related to the topic of this chapter,

which Is to extend the D/E results to the situation in which data from

more than one channel or sensor are received and it Is desired to process

them in a way that takes into consideration the inter-channel dependencies

that exist in general .

The techn iques of the prev ious two cha pters can be , and have been,

developed to a high degree of effectiveness by statisticans and , to

a lesser extent , by engineers. So far we have seen that optimal joint

detection and estimation procedures tend to involve the usual Bayes

parameter estimates (or slight modifications, to them) and fairly complicated

detectors. We have also seen that an empirical Bayes procedure can be

used to perform asymptotically optimum detection with sequentially

learned parameter pd-f’s as a by-product. The existence of these techniques

indicates that the processing system of Figure 1-1 can be improved on

a per-channel basis. In this chapter, we Investigate what kinds of receiver

structures resul t when these techniques are general ized to handl e more

than one channel simultaneously. This requires at the beginnings developing

an appropr iate matr ix no tation , and eventually invol ves delving into some

rather sophisticated mathematics in dealing with operations on functions

with matrix arguments.

40 
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4.1 Matrixj~presentation of a tiultidimens ional, Complex Gaussian Random Process

Suppose there are m channels of data being received , so that the

collection of waveforms observed on these channels may be represented

by the vector x:

x2(t)

x(t) = (4-i)

xm(t)

I , . Further , suppose that at di screte times 1t3} these waveforms are

sampled simultaneously, yielding n sample vectors 1~~}which1 together
- - can be written as a matrix:

X = 
~~~~~ 

.?
~2, 

..‘ ! ) = (x. .  = x.(t.)); I = 1,2 , j=1,2,...n.

If these waveforms are referenced to a given frequency and- phase,

then a narrowband (Rician) decomposition can be expressed

x(t) = u(t) cos (wt + $) - v(t) sin (wt + •) (4.3)

where u(-t) and v(t) are the in-phase and quadrature components of x(t)

with respect to cos(t~t + •) . We may just as well represent x(t) as the

comp lex vector waveform

x(t) = u(-t) + i!(t) (4-4)

and the matrix of sampl es as X = U -4 jV. (4 5)

(An alternate formulation is shown in Appendix B).

Now if the waveforms are from stationary , jointly Gaussian random

processes with the (mxm) covariance matrix A and mean vector in = ~~~~~ + j~,,
are independent, then the probability density function (Ddf) for the

L data is
41
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n

p(XJrn,A) = iT P(~j~ !~l!1A)
n

= [(2w
m 

IAJ]~ exp {_~~ [~ j_i!~~
’ A 1 (~~~-~~~

) + 
~~~~~~~~~~~~~

V 
(4-6)

in which tA t denotes the determinant of A and the prime ( - )  indicates

transpose.

Usin g a~~to represent elements of A~
1, we can wri te

(
~!!u)j A4(u-!!!~)~ E~~~~~~~~

E(!
~
-!

U~~Jk 
a
~~~~

_
~)rj

= ~ 1iu
)jk {c~~u_ç] kj

- 

= ~~~ [(U-M~,) I ~ (U-M~)]~~ tr (U_ti
~

) A4(U_M
~
)

where tr Y means “trace of the matrix Y” , the sum of the diagonal

elements of Y. In this and the following expressions , the mean vectors

have been artifically expanded to form matrices with n identical columns ,

for examp le ,

M
~ ~~~~~~~~~~~~ 

..,~~~~
). (4-8)

Since it is true that

tr(AB) = tr(BA), (4-9)

we can wr ite the pd-f of X as

p(XIin ,A)= [(2W)
m 

1AL~~ 
exp {4tr A

1 [(U_Mu
)(U_Mu)+ (VM v

)(V_M1)i~

= [(21)
m 

tAt] ~~etr 
~ 

1 ~ 1 
(X -M ) ( X  - Mn (4-10)

us ing etr (Y) ~~~~ the asterisk to write complex conjugate transpose, and the

facts that

(YZy = ZY and tr Y = tr Y. (4-11) 
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4.1.1 Sampl e Mean Vector

Given the complex data matrix X, we can construc t a complex sample

mean vector
- 

- 
= (u 11- v~ 

= 
~~~ 

(4-12)
j=.1 

-

and Its matrix expans ion
= ~~~~~~~~~~~ (4-13)

Since the data vectors are Gauss ian , so is ji , with

E(j~) = rn = + (4-14)

and both in-phase and quadra ture parts of p have covar iance matrix

E{(
~~

—!!!
~
)(j
~
—!,1)) = A. (4—15)

4.1.2 Sampl e Covariance Matrix

We may write a sampl e covariance matrix for the data as

C = {C~~) with 
- -

C = ~~~~ (x_x 0)(X_x0)*

= ~~~~
. [u_u 0 (

u_u
0)- + (v_v 0)(v_V0)-] (4-16)

= ~~~~~~ (X_M)(X_M)* - ~(p rn)(p_rn)* 
V

and mean value

E{C) = ~~~~~ A . (4—17)

It can be shown tha t 2nA~~C has a Wishart distribution with 2n-2 degrees

of freedom , or that

p(C) = id %tr ~-n A~~C) , q = (4-18)
Fm(fl_1)I ~.A I 

-

-
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with

Fm
(fl_1) = m(m-i)/4 

frr [n- ~ - -
~
.] .  (4-19)

4.2 Classical D/E for Matrix Data

The well-known singl e channel D/E results r&viewed in Chapter 2

will now be wor ked formall y for the case of matr ix data. For defin iteness
-

~ 
- we continue to assume Gaussian conditional distributions and the decisions

required to select either H0 and H1 where

H0 : rn =  0

-— H1 : rn $ 0; (4-20)

rn, the vector of signal in-phase and quadrature components, and A the

-no ise covariance matrix , condition the data as specified by the pdf (4-10),

and are possibly unknown .

4.2.1 Maximum Likel ihood Detection

First we cons ider the cond iti onal or MLE approach , suninarized

brie-fly by (2-18). Formal maximi zation of the conditional pdf (4-10)

requires minimization of

f(rn) = trA ’(X_M)(X_M)*. (4-21)
1~ Th is min imiza tion can be ex pressed as

and ~~~ 

(
~ç~-’!~)’ A4(u

~-!~) 
= 0

~~~~~~~ ~~~~~~~~~~~~~~~~~ 
0 (4-22)
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n
sol ut ions yield ~~ = =

M = X 0 (4-23)

This result can also be obtained by inspection if we note that

(X_M)(X_M)* = (X_X 0
)(X_X

0)* + (M_X 0
)(M_X

0)* ; (4-24)

cl earl y, this expression Is minimized for M = X0.

Under the hypothesis H1, the ML estimate for the covariance matrix

A satisf ies

IA I j -~ - - ~~~~~ tr{ ~~
. A ’(X_X 0

)(X_X
0)*} 

= 0, (4-25)

or, using B~A
4 and (4-16),

— 

- 

[fltBI~
_1 

~~~~ + ~~~ ~ 
tr {_nBC)]~~ = 0. (4-26)

This requires 
-

cof(b..) 1
= 

TBJ 
= (B 

~ji

or

B4= A = C  , (4—27)

the sample covariance.

Un der H0, the ML estimate for the covariance is found to be

¶ 

= C0 ~~.XX* . (4-28)

With these estimates , the likel ihood function becomes

~ p(X tX0,C)
L(XIM ,A) = p(X~O,C0)

= 

IC 0! etrf 
~~

- C~
1(X;:0

)(X_X0)* + ~



= I xx*I n/I (x_xo)(x_X o)*,~ 
- 

(4-29)

p and the dec ision can be wrt tten
H

IUU + v v I  A , (4-30)

V 

IUU~- U0U~ + VV - V0V0 H~ ~

B

The comparabl e single-channel (m=i ) test is -

+ v~) 
- ~~~

x1 I 
2 

- (4 31)
• ~~~(u~ + v~)- ~~ ~-~2 — 

~~ Ix 1I2-nIii2 
~o ~~

‘ 
-

so we see that powers in (4-31) are equival ent to determinants in

(4-30).

An impl ementation of (4-30) is diagrammed in Figure 4-1. The

box label led “I/Q detector” could be impl emented by an FFT, for example.

- . In order to appreciate what (4-30) is requiring as opposed to multipl e

usage of the single channel decision statistic (4-31), we shall cons ider

a two-channel exampl e (m=2). 
V

EXAMPLE (m=2). For two channel s,

+ jv11
x.  = , 1=1 ,2 , (4—32)

U2i V 21

and

• > ~ + “
~~~~~

‘

) ~~~(u11u21 + ‘
~11~2i)UIY+ VV = 

2 2 
(4-33)

> (u1~u~ + v11v21) > (u21 + v2i)

—2 —2 — —  — —
+ V 1 U

1
U

2 
+ V 1v 2

U U’ + V V = n (4-34)
0 0  0 0  — —  — —  —2u1u2 

+ v1v2 U
2 

+ V
2
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The two-channel impl ementation of the detector algorithm is shown in

Figure 4-2 schematically. It is interesting to observe that this

j impl ementation includes the two single-channel detectors (basically

power or envelope detectors, corresponding to the diagonals of XX*),

plus cross-channel detectors (basically ban dpass correl ators corres pond ing

to the off-diagonal terms of XX*).

The square-law and correlator forms of Figure 4—2 indicate that

the operations required to carry out the decision rule (4-30) are

equivalent to choosing a test statistic which is a quadratic form

in the samples. This can be shown directly, us i ng matr ix rel ations

given by Anderson :

l C + C ~0 1 
~~

i —1~ - -

-= i C + !U~~~
I C

:ci
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

C4~~~~~~~~~~~

1 1)3* 1

= I ~~~I 
,

~~ 

-

1; C 0 I
IJ~~~

-

1i! * 1 0

= Ic~ I (4-35)

1~~~ c ~ c 1)3 i

or 

A ( x )  = 1 + IL*

V 

= 1 + n u*
~
(x_x o)(x_X o)*I

4 
~ 

(4-36) 
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or H
-

~ 

— 

-• 

12/2(n-1)= np*[XX* - ~p p *)~~~j >1.. T~/2(n—1) 
(437)

H0
where T2 is a complex data version of the Hotelling T

2 statistic , a

generalization of the square of Student’s t-statistlc. For m 1 , the

square root can be taken; however, for m>i In general this cannot be

done , and T2 is related to non-central F-statistics .

4.2.2 Bayesian DIE

Applying the approach to optimal (separate) DIE reviewed in

Chapter 2, we utilize a priori pdf’s and costs to describe an average

cost or risk. For detection , the unconditional likel ihood ratio is

here given by -

p1 (X) J~Adrn p(X)rn,A) p(rn,
A)

= -— (4-38)
p0(X) J

’
dA p(XIA) p(A) 

-

What shall we use forthe a priori pdf’s p(A) and p(A,rn) = p(A)p(rn)?

One choice is to use the pdf ’s which correspond to those of MI

estimates of these matrix parameters:

an~~~~~ 

= [(2~)m
I~~ O

I]_1etr~
_
~ A0

4 (!!~!!~
) (!a_!o)*} (439)

p (A) = 
H ~-nA~~

1
A} 

. (4-40)
rm

(n_1) ,~~A0I
n_

It is at thi s point that a new order of mathematics (for the

eng ineer) enters the picture i n obta i n ing the marg inal pd-f’s p0(X) and

p1(X). Integration with respect to rn is not too formidabl e, yieldin g
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p1(XIA) =fdrn p(X Irn,A)p(rn)

= [(2W)mnIAj
n_1

1A +AOJ] 
‘etr{_~- (A+A0)

4(X_M
0
)(X_M

0)*}

(4-41)

However , integration with respect to the matrix A (positive definite

and symmetric), written

f f (4-42)

J
d A =  J da da ...da

n 12 mm
I Al >0

is considerably more sophisticated . There does exist a body -of

l itera ture treatin g the calculus of funct ions wi th matrix argumen t,

and we shall use what we have learned of It so far. One expression

which is needed to perform the integrations being considered just now

is due to Herz :

K~
m)(Z) = 2-m/dR etr {_~~R+R

4
)z}IRl ”C ’

R’ 0

This function is the rn-dimensional generalization of the modified

Bessel function of the second kind , and is one of a family of “Bessel

functions of matrix argument” whose properties are analogous to the

m=1 case. By an ingenious transformation of variabl es, Herz shows

that (4-43) yields

K~
2
~(Z) = 2j dt ...

t Kr(zit)Kr(z2t), 
- 

(4-44)

where z1 and z2 are the eigenva lues of Z. Th is ex press ion can be

computed numerically. The computational forms for m>2 are yet to be

developed , it seems . Never theless , we shall use (4-43) and the related

literature to the extent possible.
- 
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The pd-f p0(X) Is found to be

• p0(X) = k1k2(X) K (t ~~A 1XX* 
) 

(4-45a)

with

k1 
= 2 [r~(n_1)(2I)

mn
l~ A01 ” 

] 
(4-45b)

and

k (X ) = l-~— A XX* l4~
’2

2 2n 0 . (4-45c)

Similarly, p1(XJrn) is obtained as

p1(XI& = k1k3(X) K~~(%
!2nA0

.1( X_ M)(X_ M)*) (4 -46a )

with k3(X ) = l~~ 
A0(X_M) (X_M)*J

’.’2. (4-46b)

The marginal likel ihood ratio then is

p1(X~m) -A (x ) E~ ~ p0
(X ) = Ern{A (XI!.)~ 

(4-47)

- - using 
__________________

* 
1/2 K(in~~ 2nA 1(X M)(X M)3

A(Xlm) = -_______________ - 0 
. (4-48)

- 
J (X_M) (X_M)*J ”2 

~~ (~
2nA0

_1
XX*)

The result (4-46), correspo ndi ng to the “known rn ” case, is used

because we have not been abl e to integrate (4-41) to get p1(X ) , nor to

integrate (4-46), for that matter. Therefore, for the presen t we must

be satisfied to say that the Bayesian DIE for known signal for the

mul tid imensional case appears to be ana logous to that for the singl e

channel case, with determ inan ts replacing powers , etc.
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As far as struc ture is concerne d, we can make positive statements

- “ about the computational requ i rements, even without knowing the precise

expressions for the likel ihood functions and estimators. The samole

mean li and the sampl e covariance C are both sufficient statistics, it

can be shown, so that the likel ihood ratio and tP~ estimators of

rn and A will certainly Involve these statistics. In the previous

section we have indicated the manner in which these statistics are

computed , and this insight carries over from ML to Bayesian procedures.

4.3 Combined DIE for Matrix Dit4

In Chapter 3 two different approaches to 3oint detection and

estimation were examined . First, it was seen that ~~e feature of

“jointness ” can be built into D/E cost functions and used to constraint

an optimal (Bayes) system. Typically (for QCF) the estimators for

noise parameters are the usual Bayes estimates, while those for

signal parameters are weighted by the likel ihood ratio. A more

compl icated, generalized likel ihood ratio is the most distinctive

result from this approach.

Second , a less formal approach was discussed which highlights the

commonality of sufficient statistics to both detectIon and estimation ,

and attempts In effect to bridge the gap between 141 (conditional) and

Bayesian (unconditional) detection by sequential learning of a priori

pd-f’s in their “reproducing’ forms.
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As demonstrated In the previous sections , the mathematics requ ired

P to pursue Bayesian D/E in the formal sense are very difficult for the

case of mul tidimensional data, although conceptually the optimal

processor has been shown in Chapter 3. Consequently, -further

attention will not be given to cost-coupled D/E .in this report.

4.3.1 Reproducing pdf’s for Mul itd imens ional Gauss ian Data

B Once again for H1 we wr ite the cond iti onal data pdf as

p(Xlrn,A) = {(2lI)m JA I ]~~etrI_ ~~A
’(X_M)(X_M)*~ (4.49)

The corresponding reproducing a posteriori pd-f is

p (rn ,AJ X) = an lA l IA~
I” 1

~~etr{4 A 1[A~ + v(!_ ~~) (~
_
~~) *]} (4-50a)

with
n f l

A~ = A0 + (X-X 0)(X-X0) + _ _-(~~~_~~)(~~~_~~)*

= A0 + XX~ - m m * + n0~~~ * (4-50b)

= v 1 (np + n~~0) , v= n + ~~~~, q = !~1 (4-50c)

a~ = [2
m(v_ 1_~)(2,~)m r~~v_1_q)] 1 vin (4..5~~)

and the respective modes are given by

Amax 
= v4A~. ~~~~~~ 

= ~~~ . (4-51)

For H0, the conditional pd-f is

p(XIA ) = [(2~)
mIAI]_n etr {_~~A

_l
XX*I (4—52)

and the reproduc ing a poster ior i Is

p(AJX) = ~~~~~~~~~~~~~~~~~~~~~ (4-53a)
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B~ = B0 + XX* , b~

4 
= 2m (v-q) r~~v_q), (4-53b)

and mode Am x  = v 1B~. (4-54 )

It is worthwhile to note that the modes--which constitute maximum

a posteriori (MAP) estimates--undergo a transition as n, the size of

the data samp le , increases . For sma l l n , they look like the assumed

val ues (A1/n0~ ~~~~, B0/n0) but asymptotically approach the appropriate

max imum l ikel ihood estimates.

4.3.2 Sequential likelihood ratio

Now we determine the components of the likel ihood ratio L(Xn)

in the sequential form given by (3-37). Since we have postulated

• i ndependent samp les ,

- 
L(~~+1IX~ ;rn 5A) = L(~~~~Irn ,A) -

= etrl4 A
4(~~+i

_!)(~~,1
_!)* + ~ ~~~~~~~~~~~ (4-55)

Also ,

p(m~A IX~) 
2 ::~::-::I:_~ 

etr l4 A ’S0 + ~~A ’[A ,1+v a_ *,~ (m_,,~*]

(4-56)
so that

b a ~I 
,v_q+l I~ ~v -q-l

- 

L(x IX ) • nf l fl~ nfl ’ R I
—11+1 fl b 1A •v -q 11 •v -q1n+1 fl u nf l’ I 01

x etr
14~

- A ’[B~~1_B
~ + A0

_A
~4, - 

~(rn-rn )(. .. )* • (v+l)(m_ ~ ,~1
)(m_~~~1)*

+ (~~+,_&(~ ,+1_!)* - ~1l+1!fI+l ])’ 
v fl + n0~ 

(4-57)

The total l ike l ihood ratio does not depend upon in and A , so we can sel ect

any fixed value of these parameters for evaluation of (4-57). As in
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Chapter 3, we take the simpl est route of choosing A4=O. This choice

yields

b a 1B I”~~’h I~ 1 u-q+1
L x  ~ = 

n-s-i n ’ n+1’ ‘ n ’ (4-58)
—fl+1 fl a b 1A 1v-q18 1v-q

n+1 & n+1’ I

The following iterative relationships may be developed :

- 

~~~~~~ 
..(V +1)

m r~(v~i_q) 
..(v+1j’ r(v-2q+i/2)r(v-2~~ (4-59a)

A = A  + v * +  m * 1v+1’~ in *

“nfl “n ~n+i—n+1 ~~~~~~~~~~ 
- ‘Ln+l_.n+l

- -  

= A~ + —
~fr 

(~~~~~~
_

~~~~~~+i )(
~~~~~~

_
~~~~~ +i )* ,v = n

0
+ n (4-59b)

!n+1 
= (v~ , + x )/ (- ~1) (4-59c)

- 

bn+i/bn 
= 2

_in
r~(v_q)/r~(v+1_q) 

-

= 2-m r(v-2g+3/2)r(v-2q+1
) (4-59d)

r(v+1-q)r(v+1/2-q)

B~~1 
= B + 

V~~
fl+1

~~~.fl+1

* • (4-59e)

H By using a development similiar to that used to obtain (4—35),

we can wr ite also

j 
, lA n+i I = ~~ [i + iL. (!~n l )+l)*Pmn~~(!!n

_
~Cn+1)] 

(4-60a)

and

IB n+i I = I8~U1 + ~~+1*Bn
4
~~+1

), (4-60b)
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should this expression be easier to compute. The logarithm of (4-58),

or Incremen tal log likel ihood ratio, is to be accumulated as shown

- in Figure 4-3:

&(x~ 1) = &(x1 J x 1~1). (4-61)
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-- 5.0 CONCLUDING REMARKS

In conclud ing this work, which has taken the shape of the beginnIng

or exploratory phase of a much larger effort, It Is appropriate to record

various remarks which place the results In perspective and which indicate

the direction further studies ought to proceed.

5.1 Summary and Interpretation

On the basis of the study, the following comments can be made with

regard to joint detection and estimation .

a. Cost functions can be employed to link detection and estimation .

In effect, the costs quantify the concept of joint D/E; therefore, the

optimal joint operation is “optimal ” only in these sense that it

matches , or is designed to, the tasks assigned to it in the form of

cost criteria. If these criteria cannot be articulated along with other

a priori information such as pdf’s for the unknown parameters, then the

procedure becomes meaning less unless the system is also designed to

acquire or learn the information requ ired to develop the optimal

(Bayesian) system.

However , to speak in defense of Bayesian procedures, it can be shown

that systems which do not appear to have been designed wi th cost

functions in mind actually implement certain “default” cost functions.

For examp le , unconditional ML estimators impl ement the “simpl e cost

function .”

For the exampl e cost functions treated in the study, it was seen

that the parameter estimators for joint D/E are only slightly different
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from those der ived for separ ate D/E , while the detectors tend to

become significantly more complicated .

b. If a sequential , adaptive scheme is used, making use of

sufficient statistics, then a system can be designed which performs

an unconditional decision (i.e., Bayesian). This type of approach

implements joint D/E in the sense that it exploits the sufficient

statistics that are common to either operation in separate D/E--detection

after all is merely a test to determine the most likel y hypothetical

statement concerning the parameters which identify or index the

distribution of the data.

While we have not done so, there is no reason why a cost

structure cannot be superimposed upon the sequential D/E system we have

discussed in this report. The important point is that the sequential ,

“empirical ” procedure al lows an unconditioned (Bayesian) decision to be

performed without precise a priori information . As the amount of-

data increases, the initial parameter estimates give way to learned

or a posteriori val ues. Thi s behavior is reminiscent of the way in

which Kalman filters (which can be seen as Bayesian estimators under

appropriate conditions) selectively weight observations according to

their quality relative to past observations in order to maintain a

minimum mean square error fit of the data to a specified model .

• Concerning multidimensional D/E processing, the following remarks

are given :

a. In going from one sensor or data channel to several , It is

evident that the processing requirements increase more than linearly

If a “sca lar to scalar ” compar i son is made , such as In Figure 4-2.
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On the other hand , conceptuall y the same operations are performed , with

matrix and vector functions replacing scalars . Under the right

c i rcums tances , it may be possibl e to impl ement a multi-sensor system

as an “add-on” to existing single channel setups. For example , in

addition to “envel ope” or “power” detection arithietic on sing le

channel s (corresponding to covariance matrix diagonal elements),

multisensor processing requires computation of interchannel correlations

(corresponding to off-diagonal covariance elements). With the proper

data links provided , only the additional processing need be performed

at the central or master site.

b. The analysis of multidimensiona l or matrix data system

model s, particularly when compl ex (narrowband) data representations

are maintained , presents a direct challenge to the engineer ’s

mathematical backgroupd. It appears that very useful generalizations

of “analog ” functions to matrix argument exist, but very much are the

I ~ property of the mathematicans. For exampl e, matrix equival ents of the

Laplace transform, Bessel functions , garna and beta functions , and

hypergeometric functions have been found . With these generalizations ,

the expressions for system functions and the analytical operations

performed on them look very familiar to the engineer , so that he can

apply his experience with the singl e channel theory almost directly.

It is not certain , however, that even the math experts know how to

compute some of these expressions; this may be the critical factor in

the usefulness of their theories.

B

- 

61

-- - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V -V~~V- V- V- V-V -V 
—--V. —



- -- - - ~V.~I V . 5 ~~~~
_

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4

5 5.2 Applications 
-

In this section we indicate what might be potential applicat ions

of some of the resul ts obtained in the course of this exploratory

study. Since the emphasis has been on both detection and estimation , the

f3rmulation has been that of received data which is conditioned upon

signal and noise parameters which are unknown . Care has been taken also

to maintain a complex or narrowband representation of the data.

For exam ple , Chapter 4 deals with the case of m sensors in the

presence of Gaussian noise , and can support -the following interpretation.

The unknown mean components correspond to reception of a narrowband V

source at m locations:

(rn ). = k.S(-t— -r.) cos(++w-r1)1 (5—1)
- 

- 

~ v~i 
= k1S(

t_ -r~) sin (4+wt1 ) .

The {k1)-, representing attenuation/spreading loss, and the {-r 1}, standing

for propagation del ays, contain information about the location of the

source. From estimatior. of the compl ex mean vector in this case,

further inferences coul d be made concerning the {k1) and the

assumi ng that the usual probl em of ambiguity is handled appropriately

for sensors separated by more than a wavel ength. Because the mean

vector estimate (p in the ML approach) is multivariate Gaussian with

covar iance ma tr ix A/n , the covariance matrix estimate would be used

in the inference procedure. In general , because of the no ise struc ture

or possibly due to broadband components of the source itself, the co-

variance matrix Is not diagonal- -i.e., the noise received at the different

sensors are correlated .
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In the formulation used, in the usual analytical manner the unknown

- - 
• parameters were assumed fixed during the observation period . This need

not be a great restriction on application to long observation periods

in which the parmeters can be expected to change. Reformulation along

sequential lines woul d facilitate adaptation to varying parameters, in

wh ich case also it would be lo gi cal to replace the “unit del ays” ind icated

in the examples with a combination of unit delay and weighting (<l)--to

impl ement an “exponen tia l averag ing ” concept--or perhaps to fix the

(local) observation time according a sliding window scheme.

The multidimensional formulation permits treatment of an

important probl em: the case of a buoy with omnidirectional and

V nominally orthogonal directional sensors in a noise environment which

causes the sensor outputs to be correlated when noise only is present.

In such cases the optimal detector/estimator can be found by the

procedures sketched in this report, although impl ementation may require

fur ther “pushing ” of the mathematics .

I

5.3 Recommendations

Under the heading of further study , the follow ing ef forts are

recommen ded:

(a) Compl ete the unknown mean vector and covariance matrix case

by finding the receiver operating characteristics (ROC). At this point,

we can conjecture that t he compl ex data vers ion of the Ho tell ing

statistic (4-37) is analogous to its more familiar form, but with twice

the numbers of degrees of freedom, or
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1i~ 2(n-1) 

F2m ,2n_ 2m(n!~i*A
_l
!), (5—2)

where F( ) is the noncentral F-statistic , but this needs to be proven.

Once the ROC are found , var ious numer ical tradeoff anal yses can be

made i n order to determ ine the amoun t of advan tage a mul tid imens ional

- - ML processor , for examp le, may have over “l inear” combinations of

singl e channel processors. -

- p
(b) Although the cost formulation associated - wi th the Bayesian

procedures discussed in this study is often difficul t to put into
V 

practice, it would be useful to try It out thoroughly for a concrete

system example. Presu mably, system decisions result In actions, and

those actions cost something. Realistic and cost functions , when

formul ated , might drive an effective design . For example, cost functions

involv ing num bers of sensors an d computational compl exity along with

the usual costs perhaps can be used to quantify System tradeoff

considerations.

(c) Further synthesis of the two basic approaches to combined

D/E--the cost formulation and the sequential--woul d be very useful in

designing practical , adaptive, mul tidimensional processors. Inter-facing

with Kalman filter procedures would probably be involved . What this

synthesis would offer is an “al gor i thm ” for optimizing the procedures

and making it more a “sc ience ”, less an “ar t” .

(d) Various simulations of multidimensional approaches discussed

in this report would reveal their overall practicality--or not--and

woul d stimulate refinement in computational aspects of the problem.
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(e) Additional research in the mathematical literature will ,

it is hoped , uncover more useful information on multidimensional or

matrix-valued functions. A treatment of such functions at the

engineer ’s level would give him more power to deal with the increasingly

complex data environment (C3, etc.) that exists now.

There is a well—developed literature concerned with multivariate

stat istical anal ysis ( includ ing complex data) that appears to be worth

searching also- For example, Parzen and Newton interpret time series

modelIng as having two stages: model identifi cation and parameter

identification; these two stages can be seen as corresponding to what

we have termed detection and estimation . The notion of an “index

time ser ies ”, as expl ained by these authors, seems l ikely to have some

~ ! 
appl ication in tracking--I.e., when the signal parameters vary in time

because of source motion.

t~ _
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Append ix A

MULTI-SENSOR DETECTION INTERPRETED AS A

PROBLEM IN THE ANALYSIS OF VARIANCE

A statistical model for experimental data which is used extensively

is the following : the data , subject to “treatments ’~ A and B are denoted by

where a priori the data are samples of the tiN independent random

variables

(X~~} N(1j13, a2), i1,2,. .. ,P1; j 1,2,. .,N;

with

= 
‘~ + + 

~~
.; ~ a,1 = 

~ 

= 0.

5 1

That is, the data are assumed to be sampl es of a population of normal random

variables with equal (but unknown) variance ~2 and with means varying

• from the equal (but unknown) value ii by row parameters {cz~ ) and column para-

meters {B~) wh i ch , respectively, model the effects of two treatments . This

model is known as “two-way classification with one observation per cell.”1

I

Given this model , statistics can be constructed to test, -for example,

the composite hypothesis
- H :ii.. = p + cx~~, }cx~ = 00 53

(treatment B of no effect) against the alternative composite hypothesis
p + a. + B~3, !a1

i 
~Bj 

= 0.

Because the test statistics based on likelihood functions turn out to be

ratios of quadratic forms in the data , the testing procedure has come to be

known as “analysis of variance (ANOVA) .”

1Hogg and Craig , Intro, to Math. Stat.
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In this study, a multi -sensor detection probl em is model ed asp
two-way classification to gain some insi ght into possibl e detector configura-

tions . First , the model is exercised for “one-way” classification.

S let a narrowband signal s(t) S(t)cos (w
~4~

+e(t)) be received at N

sensors which also are subject to independent Gaussian noise , so that the

received waveforms are

u~(t) = s~(t) + n~(t)

= k
~

S(t_t
~

)cos [w
~
t+e(t_t

~
)] + N

~
(t)cos[u~

t+,(t)]

= {k
3S(t—t 3)cos [e(t-t~)] + n

~~
(t))cosw

~
t

_ k
~S(t_t~)sinEe(t:t~)] + n

~5
(t))sinw

~
t 

:
= x

~
(t)cosw

~
t - y

~
(t)sinw

~
t.

If M i ndependent samples are taken at each sensor , then the informa tion thus

obtained is represented by the MN pairs (x ,3, ~1~
) (x .(t1), ~~(t 1)).

Under this representation, all the random variables are independent, and it

shall be assumed that over the observation interval the noise variances

rema in cons tant , with

Var (x 1~
) = Var(Y 1~) 

= o~

as well as the signal terms

E{x~~) 
=
~ ~~~~~ 

= 1-1 + B
,
~ , E{y1~) 

= m1~ m + b
3
. 

-

Thus , the general probability density function (pd-f) is given by

= c n hN 
exp~~- i~~~~~~~~~~

[(x
ii

_
~

_ 8
~
)

2 

+(
~~~

ii
~~~~~~~~~

i)

2

]

~~~

j=1

where the parameters {p ,  o~ , 8~~~, b~) are unknown to the observer.
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FIRST DETECTION
p

If we wish to discover whether there is significant signal energy

being received by at least one sensor , we may seek to reject the hypothesis

• 
H0 : u 1~~~ u m 1~~~~m YIj

in favor of the hypothesis

H1 : 
= p + 

~~~~ 
m1~ 

= m+b~ , = 0 = ~~

To do this, we test the likelihood ratio
. H

~ k
1(w) H0

where the likelihood functions L(c~) and 1(w) are the assumed pd-f under H1

- and H0 respectively , and the caret (~
) signi fies that the unknown parameters

have been estimated in such a way as to maximi ze the likelihood -function.

From the al terna tive l ikel ihood function , we obtain

(.  = ~ )1(x~~/o~)/~ ~(1/a~) 
= ~

using

and 

=

= ij -

I; = 1(~
7
j/a~

)/
~
(I/a

~
) 

-

t V  .3 3

and
= ~~ [x ,j - ~~)2 

+ (~~~~~ )2] ~
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With these estimates,

1(n) = 
(2~e~~~
j °j l

From the nul l likelihood function we get the same estimates for

p and m, but for o~ we find

;~ = ~ [C~~~~~
2 

+ cy~ -rn)2] 
~

resul ting in

l ()  =

~ 
ajo

V 

Therefore we reject H0 when 
V

= 2 \2M > k
j-VX’j i /

or I[(x . ~_;)2 
+ ~~~~~ . ~~~~~~~~~~~

1/ti _ f l  ~~~~~ 
13 13

— 

I{(x13-i~
)2 

+ (y 1~
_
~~)

2]

f 2 ~2
= fl ’l + 2 

> k~~
M.

i t  2°j1

This form is very interesting since estimates

= E{x 1~ —v )

= k3S3cose~ 
- )(k~S~cose~)/)(1Io~)

= 65
~c’ 

a “recognition differential ,”
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-
- p so that the test statistic may be interpreted as

>c.

- 
That is , the test stat istic can be seen as the average signal-to-noise ratio

(h ) among the sensors, estimated from the received data. Another interpreta—

tion is given by understanding the statistic as the incoherent sum of the sensor

powers, each normalized by estimates of variance
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APPENDIX B

VECTOR DATA PROBABILITY MODEL

Formerl y we spoke of a “data matrix ”

X = )J x1(t~) fl, i = 1,2,...n; I =

made up of n samples from each of m channels. Rather than employing some

kind of tensor notation (i.e., three subscripts) In order to describe

the statistical behavior of the data In matrix form, Instead we define

the vector ~ created by “stack ing” the columns of X to make one big

column vector with dimensions (mn X 1):

ç =  (x 1(t 1), x2(ti),...,xm
(t i );x i

(t2) ,...xm(t2);...xi(tn),...,X,,~(tn)Y
p or - -

- 3- 
= where x

1 
= j:th colu mn of X.

With this notation we can specify a mean value vector p which corresponds

to ~~, and a covariance matrix (mn X mu ) 
-

CO Cl C2 ... C~_1

~~1 ~~0 ~l ~n~2
=C.

_ C~_1 C~~2 C~~3 -

The given form of C specifies that It is composed of n2 (m X rn) submatrices

and tha t the submatr ices on given d iagonals the same “distance” from the

main diagonal are identical. Thus n different submatrices are specified :
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- t

p or 

Ck 
= E{(x 1 

— 

~.i
X.~i±k 

- i’.i±k)~~’ 
k= 0,1,..., n— i;

Ck ~
{t
~J
)
k 

= JJ R ~1
(k~t) JJ~ I, j = l,2,...m for~~ 0.

Here , (~~ ) is the cross-correlation function between waveforms in

channel s I and j. This structure presupposes wide-sense stationarlty

in the data over the observation interval .

With this notation , then , we can write the probability density

function for the data matrix elements. Assuming that each channel

receives a deterministic signal waveform corrupted by a zero-mean

Gauss ian random no ise process , the pd-f is:

p(
~ 

0, r~) =[(2~
)mn det C (is)] exp f½ [~ -!L (~~.)] ‘~ C 

4(e) 
~ !~.

(2.)])~

where 0 and r~ are signal and noise parameters, respectively. If the

signal is also from a zero-mean Gaussian random process, the pdf

would be wr itten:

p(_c_ J 0, n) =[(2~)mn det C (0, r~) ~ Jexp ~-½ ~ C ‘ (o,~~~.

~
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